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Summary

! High-efficiency methods for DNA assembly have enabled the routine assembly of synthetic
DNAs of increased size and complexity. However, these techniques require customization,
elaborate vector sets or serial manipulations for the different stages of assembly.
! We have developed Loop assembly based on a recursive approach to DNA fabrication. The
system makes use of two Type IIS restriction endonucleases and corresponding vector sets for
efficient and parallel assembly of large DNA circuits. Standardized level 0 parts can be assem-
bled into circuits containing 1, 4, 16 or more genes by looping between the two vector sets.
The vectors also contain modular sites for hybrid assembly using sequence overlap methods.
! Loop assembly enables efficient and versatile DNA fabrication for plant transformation. We
show the construction of plasmids up to 16 genes and 38 kb with high efficiency (> 80%).
We have characterized Loop assembly on over 200 different DNA constructs and validated
the fidelity of the method by high-throughput Illumina plasmid sequencing.
! Our method provides a simple generalized solution for DNA construction with standardized
parts. The cloning system is provided under an OpenMTA license for unrestricted sharing and
open access.

Introduction

Standardized approaches to the assembly of large DNAs have
played an important role in the development of systematic strate-
gies for the reprogramming of biological systems. This began
with the implementation of idempotent assembly methods based
on DNA digestion/ligation using standardized nested restriction
endonuclease (RE) sites, such as the BioBrick assembly method
(Knight, 2003; Shetty et al., 2008). More recently, assembly tech-
niques that enable the parallel assembly of multiple components
in a single reaction have been established. These include methods
that utilize long-sequence overlaps (Bitinaite et al., 2007; Li &
Elledge, 2007; Zhu et al., 2007; Gibson et al., 2009; Bryksin &
Matsumura, 2010; Zhang et al., 2012; Beyer et al., 2015; Jin
et al., 2016), systems reliant on in vivo recombination (Ma et al.,
1987; Gibson et al., 2008b; Joska et al., 2014) and Golden Gate
(Engler et al., 2008)-based methods that rely on selective diges-
tion and re-ligation of plasmid DNAs with Type IIS REs (Sar-
rion-Perdigones et al., 2011, 2013; Weber et al., 2011; Engler

et al., 2014; Storch et al., 2015; Iverson et al., 2016; Moore et al.,
2016). Type IIS and long-overlap-based methods have allowed
increased scale and efficiency of DNA circuit assembly, whereas
in vivo recombination remains the method of choice for genome-
scale manipulations (Gibson et al., 2008a,b, 2010a; Benders
et al., 2010; Karas et al., 2012, 2013).

Gibson assembly, a sequence overlap-based method, was devel-
oped for the synthesis and assembly of Mycoplasma genomes
(Gibson et al., 2008a, 2010a) and enabled the assembly of DNAs
of up to several hundred kilobases (kb) in one-pot isothermal
reactions (Gibson et al., 2009). This method has been widely
adopted by the synthetic biology community, being scar-free,
versatile and relatively efficient. However, Gibson assembly gen-
erally relies on the use of oligonucleotides to perform in vitro
amplification of DNA fragments, which can be error prone (Keo-
havong & Thilly, 1989; Gibson et al., 2010b; Potapov & Ong,
2017). The method is also sensitive to sequence composition and
repeats, and hence efforts have been made to standardize and
streamline Gibson assembly by including flanking unique
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nucleotide sequences (UNSs) that can be used as long overlaps
for the cloning of transcription units (TUs) into larger constructs
(Torella et al., 2013). Perhaps because of the flexible nature of
Gibson assembly, a standard for composing elemental parts into
TUs has not been proposed to date. Laboratories that employ
Gibson assembly rely on their own set of rules and templates for
DNA parts, and there has been no community-wide effort to
develop a common standard.

By contrast, Type IIS assembly systems are virtually free of
ad hoc design, and are highly efficient for both the assembly of
TUs and the assembly of elementary parts into TUs (Patron,
2016). These methods do not require PCR amplification or
fragment isolation, and allow the parallel assembly of a large
number of DNA parts (Potapov et al., 2018). Instead of PCR,
these methods exploit Type IIS REs to generate fragments with
short complementary overhangs that can be ligated in a one-
pot reaction. Although this approach can be scarless, the appli-
cation of standard overhangs (fusion sites) for DNA parts with
a defined function (e.g. promoter, coding sequence (CDS), ter-
minators) allows the same DNA parts to be re-assembled into
multiple constructs without redesign or modification (Engler
et al., 2008; Sarrion-Perdigones et al., 2011, 2013; Weber et al.,
2011; Lampropoulos et al., 2013; Binder et al., 2014). Recently,
a common syntax has been proposed by developers and
adopters of Type IIS cloning methods. This standard defines an
unambiguous arrangement of 12 Type IIS overhangs that form
boundaries between functional domains found within a general-
ized eukaryote gene (Patron et al., 2015). The common syntax
is based on the widely used MoClo and GoldenBraid standards,
and has found acceptance in the plant field (Patron et al.,
2015) and iGEM in the form of PhytoBricks standard parts.
The common syntax ensures that these Type IIS assembly sys-
tems can share a common stock of standardized DNA parts to
be shared and used in an off-the-shelf manner. The establish-
ment of a common standard for stock DNA parts also provides
a prevailing syntax that enhances the transferability and repro-
ducibility for the compilation of genetic instructions in differ-
ent laboratories. The assembly of an exact copy of a genetic
construct is possible simply by knowing its composition, elimi-
nating unnecessary ad hoc design and enabling simple abstract
descriptions that contain a precise implied sequence. However,
Type IIS assembly systems require the refactoring or ‘domesti-
cation’ of DNA parts, generally performed through PCR or
DNA synthesis. Domestication refers to the elimination of RE
sites present in the DNA sequence before its use in the assem-
bly system. To date, the most commonly used REs have been
BsaI, BsmBI and BpiI, which have 6-bp recognition sites that,
although not frequent on average, are regularly encountered in
DNA sequences (Lin & O’Callaghan, 2018). Type IIS REs,
such as SapI and AarI, with 7-bp recognition sites, can be used
to lower the probability of finding sites requiring domestica-
tion, and are used in the ElectraTM (ATUM, Newark, CA,
USA) and GeneArtTM (ThermoFisher, Waltham, MA, USA)
kits, respectively. Type IIS-based systems have found rapid
acceptance in the synthetic biology field because of the need for
robustness, scalability and compatibility with automated

assembly methods. As synthetic biology is already at the point
at which constructs can consist of multiple logic gates (Nielsen
et al., 2016), entire biosynthetic pathways (Temme et al., 2012)
or engineered genomic DNA (Richardson et al., 2017), robust
assembly methods, such as Type IIS assembly, are essential to
enable the fabrication of higher order genetic constructs.

Despite much progress in the technical aspects of DNA con-
struction and part reusability, restrictive intellectual property (IP)
practices and material transfer agreements (MTAs) can hinder the
sharing of DNA components in both the public and private sec-
tors, delaying experimental work through paperwork and legal
consultation. For this purpose, an international effort is underway
to establish the OpenMTA (https://www.openmta.org) as a way
of expediting the sharing of biological materials. The OpenMTA
provides a legal template for free and unrestricted distribution of
materials, providing a formal mechanism for effectively placing
materials in the public domain, in a manner that extends existing
practices. Open sharing of DNA assembly systems and parts
through the OpenMTA will facilitate the engineering of new
solutions for problems in human health, agriculture and the envi-
ronment, such as those identified as Sustainable Development
Goals by the United Nations (https://www.un.org/sustainab
ledevelopment) and Global Grand Challenges by the Gates Foun-
dation (https://gcgh.grandchallenges.org).

Here, we present Loop assembly, a versatile, simple and effi-
cient DNA fabrication system based on recursive DNA assembly.
It combines all the benefits of Type IIS assembly, but requires
only a set of eight plasmids to build constructs with theoretically
unlimited length. As well as Type IIS assembly, the system inte-
grates long-overlap assembly methods. In this way, four TUs can
be assembled into multiple TUs using alternative methods, such
as Gibson assembly via flanking UNSs (Torella et al., 2013). In
our method, Type IIS assemblies are performed through iterated
‘loops’. Two sets of four plasmid vectors are provided, which
allow alternating assembly cycles. First, Level 0 parts, defined by
the PhytoBrick common syntax, are assembled into Level 1 TUs
in each of four odd-numbered vectors using BsaI. Second, four
Level 1 modules can then be assembled into a Level 2 construct
in each of the four even-numbered vectors using SapI. Following
this, Level 2 constructs can be combined by cloning back into
odd-numbered vectors, using BsaI, to create Level 3 assemblies
containing up to 16 TUs each. The iterative process of combin-
ing genetic modules, four at a time, can be continued without
theoretical limit, alternating assembly steps between odd and
even Loop vectors. As levels are used recursively, it is possible to
create hybrid levels that can contain a mixture of parts from dif-
ferent levels of the same parity (i.e. Level 2 vectors combined
with elements from Level 0 vectors). In addition, we have devel-
oped LOOPDESIGNER, a software framework for in silico sequence
handling and assembly design. The software tools are open source
and available through Github, and Loop assembly vectors are
provided through the OpenMTA for unrestricted use. We have
developed and tested the Loop assembly system in different labo-
ratories and provide data to support the efficiency and robustness
of the method. We have assembled over 200 constructs with up
to 16 TUs and over 38 kb in size. We have tested Loop constructs
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in planta and validated their function in transgenic Marchantia
polymorpha, and through transient expression in Arabidopsis
thaliana protoplasts.

Materials and Methods

Construction of Loop assembly backbones

Loop assembly vectors were constructed using Gibson assembly
(Gibson et al., 2009). Several changes were made to a pGreenII
vector (Hellens et al., 2000) to obtain a basic plasmid backbone
for the Loop assembly vectors: BsaI and SapI sites were removed
from the plasmid using silent mutations when possible. In order
to reduce issues with the stability of large constructs in bacteria
(Moore et al., 2016; Watson et al., 2016), two nucleotides of
the pGreenII ColEI-derived origin of replication were mutated,
reversing it into the medium–low copy number pBR322 origin
of replication. A region extending from the T-DNA left border
to the hygromycin resistance gene cassette was replaced with the
sequence of the pET15 vector (Haseloff, 1999) from the nptII
nosT terminator to the UASGAL4 promoter (bases 2851–3527).
A spectinomycin resistance was cloned to replace the nptI cas-
sette to provide a microbial selection marker for the pEven plas-
mids. UNSs were cloned into the kanamycin and
spectinomycin version of the vector backbones after the 30 end
of the pET15 vector sequence and the right border. Finally, the
Loop restriction enzyme sites (BsaI and SapI), overhangs and
the lacZa cassette were cloned in between the UNSs, yielding
the pOdd and pEven vectors. L0 plasmids used for Loop Type
IIS assembly were assembled using Gibson assembly into a
modified pUDP2 (BBa_P10500) plasmid, which contained a
20-bp random sequence (50-TAGCCGGTCGAGTGATACA
CTGAAGTCTC-30) downstream of the 30 convergent BsaI site
and upstream of the BioBrick suffix, to provide nonhomologous
flanking regions for correct orientation during overlap assembly.

DNA spacers

Random DNA sequences were retrieved from Random DNA
Sequence Generator (https://www.faculty.ucr.edu/~mmaduro/ra
ndom.htm), ordered as dsDNA fragments from IDT and assem-
bled using Gibson assembly.

Plasmids and construct design

L0 parts used for DNA construction are described in Supporting
Information Table S1; their sequences are included in the Sup-
porting Information and are available through Addgene.
Sequences for Loop plasmids and resulting multigene assemblies
are included in Supporting Information.

The design of the constructs was performed using
LOOPDESIGNER software, installed on a local machine. The soft-
ware was configured to use Loop assembly backbones together
with BsaI and SapI REs, as well as A–B and a–x overhangs. In
addition, the definitions of 12 L0 part types were added to the
software, based on the overhangs specified by the common syn-
tax. The sequences of the L0 parts were added to the

LOOPDESIGNER database, assigning one of the defined part types,
and assembled consequently into Level 1 and Level 2 constructs
in silico. The concentrations of L0 parts and Level 1 constructs
were adjusted to those suggested by LOOPDESIGNER for 10-ll
reactions.

Loop Type IIS assembly protocol

The Loop Type IIS assembly protocol was adapted from Patron
(2016), and can be found at https://www.protocols.io/view/
loop-assembly-pyqdpvw. An aliquot of 15 fmol of each part to
be assembled was mixed with 7.5 fmol of the receiver plasmid
in a final volume of 5 ll with distilled H2O (dH2O) (Table S2).
The reaction mix, containing 3 ll of dH2O, 1 ll of T4 DNA
ligase buffer 109 (no. B0202; NEB, Ipswich, MA, USA), 0.5 ll
of 1 mg ml"1 purified bovine serum albumin (1 : 20 dilution in
dH2O of BSA, Molecular Biology Grade 20 mg ml"1, NEB cat.
B9000), 0.25 ll of T4 DNA ligase at 400 U ll"1 (NEB cat.
M0202) and 0.25 ll of corresponding restriction enzyme at
10 U ll"1 (BsaI NEB cat. R0535 or SapI NEB cat. R0569),
was prepared on ice. Then, 5 ll of the reaction mix was com-
bined with 5 ll of DNA mix for a reaction volume of 10 ll
(Table S3) by pipetting, and incubated in a thermocycler using
the program described in Table S4. For SapI reactions, T4
DNA ligase buffer was replaced by CutSmart buffer (NEB cat.
B7204S) supplemented with 1 mM ATP; 1 ll of the reaction
mix was added to 50 ll of chemically competent TOP10 cells
(no. C4040100; ThermoFisher) and, following incubation at
42°C for 30 s, samples were left on ice for 5 min, 250 ll of
Super Optimal broth with Catabolite repression (SOC)
medium was added and cells were incubated at 37°C for 1 h.
Finally, 5 ll of 25 mg ml"1 of 5-bromo-4-chloro-3-indolyl-b-
D-galactopyranoside (X-Gal) (no. B4252; Sigma-Aldrich), dis-
solved in dimethylsulfoxide (DMSO), was added and the cells
were plated onto selective Lysogeny broth (LB)-agar plates sup-
plemented with 1 mM Isopropyl b-D-1-thiogalactopyranoside
(IPTG) (no. I6758; Sigma-Aldrich). Assembly reactions were
also automated. The assembly reactions were identical, but
scaled down to a total volume of 1 ll. Reactions were set up on
a Labcyte Echo (San Jose, CA, USA) in 384-well plates and
incubated on a thermal cycling machine using the same condi-
tions as described above. Reactions were transformed into 4 ll
competent XL10-Gold® Ultracompetent Cells (Agilent Tech-
nologies, Santa Clara, CA, USA) and plated onto eight-well
selective LB-agar plates. Colonies were picked for growth in
1 ml of medium in 96-well plates on a Hamilton STARplus®

platform (Reno, NV, USA).

Standardized PCR of transcriptional units

PCR using UNS oligonucleotides was performed at an anneal-
ing temperature of 60°C, with 35 cycles using Phusion High-
Fidelity DNA polymerase (no. F-530; ThermoFisher) in 50-ll
reactions, according to the manufacturer’s instructions. Tem-
plate was added to a final concentration of 20 pg ll"1. DNA
fragments were visualized using SYBR Safe DNA Gel Stain (no.
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S33102; ThermoFisher) on a blue LED transilluminator
(IORodeo, Pasadena, CA, USA). DNA purification was per-
formed using a NucleoSpin Gel and PCR Clean-up purification
kit (no. 740609.250; Macherey-Nagel, D€uren, Germany). UNS
primers used in TU amplification are listed in Table S5.

Validation by sequencing

The sequences of the assembled plasmids were verified by com-
plete sequencing using 150-base pair paired-end reads on an Illu-
mina MiSeq platform, and can be found in the EMBL-ENA
database grouped under study PRJEB29863. Libraries were pre-
pared using the Nextera XT DNA Library Prep Kit (no. FC-131-
1096; Illumina Inc., San Diego, CA, USA), using the manufac-
turer’s protocol modified to a one in four dilution. Reads were
filtered and trimmed for low-quality bases and mapped to plas-
mids using the ‘map to reference tool’ from GENEIOUS 8.1.8 soft-
ware (https://www.geneious.com; Kearse et al., 2012), with
standard parameters. Sequence fidelity was determined manually.

Agrobacterium-mediatedMarchantia transformation

Agrobacterium-mediated transformation was carried out as
described previously (Ishizaki et al., 2008), with the following
exceptions: half of an archegonia-bearing sporangium (spore-
head) was used for each transformation. Dried spore-heads were
crushed in a 50-ml Falcon tube with a 15-ml Falcon tube and
resuspended in 1 ml of water per spore-head. Resuspended spores
were filtered through a 40-lm mesh (no. 352340; Corning Inc.,
NY, USA) and 1 ml of suspension was aliquoted into a 1.5-ml
Eppendorf tube and centrifuged at 13 000 g for 1 min at room
temperature. The supernatant was discarded and spores were
resuspended in 1 ml of sterilization solution, and incubated at
room temperature for 20 min at 150 rpm on an orbital shaker.
The sterilization solution was prepared by dissolving one Milton
mini-sterilizing tablet (Milton Pharmaceutical UK, Cheltenham,
UK active ingredient, sodium dichloroisocyanurate CAS: 2893-
78-9: 19.5% w/w) in 25ml of sterile water. Samples were cen-
trifuged at 13 000 g for 1 min, washed once with sterile water and
resuspended in 100 ll of sterile water per spore-head used. One
hundred microlitres of sterilized spores were inoculated onto half-
strength Gamborg’s B5 1% (w/v) agar plates and grown under
constant fluorescent lighting (50–60mol photons m"2s"1) upside
down for 5 d until co-cultivation. Sporelings were co-cultivated
with previously transformed and induced Agrobacterium GV2260
transformed with the pSoup plasmid (Hellens et al., 2000) in
250-ml flasks containing 25 ml of half-strength Gamborg’s B5
medium supplemented with 5% (w/v) sucrose, 0.1% (w/v) N-Z
Amine A (Sigma cat. C7290), 0.03% (w/v) L-glutamine (Sigma
cat. G8540) and 100 lM acetosyringone (Sigma-Aldrich cat.
D134406) for 36 h, until washing and plating onto selective
medium.

Laser scanning confocal microscopy

A microscope slide was fitted with a 65-ll Gene Frame
(ThermoFisher cat. AB0577) and 65 ll of dH2O was placed in

the centre. Marchantia gemmae was carefully deposited on the
drop of dH2O using a small inoculation loop and a #0 coverslip
was attached to the Gene Frame. Slides were examined on a
Leica, Wetzlar, Germany TCS SP8 confocal microscope platform
equipped with a white-light laser (WLL) device. Imaging was
conducted using a Leica HC PL APO 209 CS2 air objective
with a sequential scanning mode with laser wavelengths of 405,
488 and 515 nm, capturing emitted fluorescence at 450–482-,
492–512- and 520–550-nm windows, respectively, in each
sequential scan. Z-stacks were collected every 5 lm for the com-
plete volume range and maximum intensity projections were pro-
cessed using IMAGEJ software. Fluorescence bleedthrough from
the blue pseudocoloured channel (membrane-localized enhanced
green fluorescent protein (eGFP)) into the green pseudocoloured
channel (nuclear-localized Venus) was eliminated using custom
Python scripts which subtracted 20% of the value of pixels present
in the blue channel to the green channel. Images were edited to
scale the pixel intensity to the full 8-bit range and a merged image
was processed.

Transient expression in Arabidopsis mesophyll protoplasts

Well-expanded leaves from 3–4-wk-old Arabidopsis plants
(Columbia-0) were used for protoplast transfection. Plants were
grown at 22°C in low-light (75 lmol m"2s"1) and short-
photoperiod (12 h : 12 h, light : dark) conditions. Protoplasts
were isolated and polyethylene glycol (PEG) transfected accord-
ing to Yoo et al. (2007). For transfection, 6 ll of Loop L2 plas-
mids (2 lg ll"1), isolated by a NucleoBond Xtra Midi/Maxi
purification kit (Macherey-Nagel cat. 740410.50), were used.
Transfected protoplasts were incubated for 12 h in light and then
visualized by epifluorescent microscopy in a Neubauer chamber
(Hirschmann Laborgeräte, Eberstadt, Germany).

Epifluorescence microscopy

Transfected protoplasts were visualized using a Nikon Ni micro-
scope (Minato, Tokyo, Japan) equipped with 49021 ET –
EBFP2/Coumarin/Attenuated DAPI (excitation, 405/20 nm;
dichroic, 425 nm; emission, 460/50 nm), 96227 AT-EYFP (exci-
tation, 495/20 nm; dichroic, 515 nm; emission, 540/30 nm),
96223 AT-ECFP/C (excitation, 495/20 nm; dichroic, 515 nm;
emission, 540/30 nm) and 96312 G-2E/C (excitation, 540/
20 nm; dichroic, 565 nm; emission, 620/60 nm) filter cubes.

LOOPDESIGNER

In order to implement an object-oriented model for Loop assem-
bly, we built a PartsDB library (https://github.com/HaseloffLab/
PartsDB) to define several interlinked classes, each of which is
associated with a table in a relational SQL database. The structure
of LOOPDESIGNER is built around a Part class, which either repre-
sents an ordered collection of children parts from which it is
assembled, or a DNA sequence in the case of L0 parts. In this
way, we ensured that the actual DNA sequence is only stored
once, and the sequences of L1 and higher parts are constructed
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on demand from the relational links. In addition, each Part is
associated with one of the Backbone instances which, together
with a Part sequence, represents a complete Loop assembly plas-
mid. Every instance of a Backbone class is a combination of a Base
Sequence and a donor Restriction Enzyme Site, for example, pOdd
1-4 and pEven 1-4 are Backbone instances in the schema
described in this article. Base Sequence represents a type of
receiver plasmid, for example, pOdd and pEven, and is com-
posed of a DNA sequence of the plasmid and an instance of a
receiver Restriction Enzyme Site. Finally, Restriction Enzyme Site
class is composed of a Restriction Enzyme instance, which stores
the restriction enzyme recognition sequence, and a pair of over-
hang sequences, which can be either receiver or donor overhangs.

Results

Loop assembly

The Loop assembly kit consists of two sets of plasmids that par-
ticipate in a cyclic assembly process. Type IIS REs, BsaI and SapI,
are used alternately for the recursive assembly of genetic modules
into a quartet of either odd (L1, L3,. . .) or even (L2, L4,. . .)
receiver plasmids. At each step in the assembly ‘loop’, four
genetic modules are combined into a receiver plasmid (Fig. 1a).
Odd and even level plasmids use alternating types of antibiotic
selection, kanamycin resistance for odd levels (pOdd plasmids)
and spectinomycin resistance for even levels (pEven plasmids), to
enable the use of a one-pot digestion–ligation assembly reaction
(Engler et al., 2008). At each level (except for TU assembly from
L0 parts), four parental plasmids are required, leading to an expo-
nential increase in the number of TUs by a factor of four per level
(Fig. 1b).

Plasmids in Loop assembly act as both donors and receivers
because of the special arrangement of the RE sites. The odd
receiver plasmids contain a pair of divergent BsaI sites that are
removed in the cloning reaction, whereas a pair of convergent
SapI sites, flanking the BsaI sites, allows the odd plasmids to act
as donors for assembly into the following level. Similarly, the
even plasmids contain a pair of divergent SapI sites flanked by
convergent BsaI sites (Fig. 2a). On digestion, donor plasmids
release DNA fragments (between the convergent RE sites) with
specific overhangs that define the direction and position in the
assembly, whereas the receiver plasmids release the divergent RE
sites allowing for the assembly of the donor fragments.

The overhangs created by the BsaI digestion of the odd
receivers allow the construction of TUs from any parts that are
compatible with the PhytoBrick standard (Patron et al., 2015),
such as L0 parts derived from MoClo and GoldenBraid plasmid
libraries (if free of SapI sites). BsaI overhang sequences are termed
A, B, C, E and F, with A and F designated as flanking terminal
overhangs, and SapI overhang sequences are termed a, b, c, e and
x, with a and x designated as flanking terminal overhangs. Exam-
ples of odd and even level assemblies are shown in (Fig. 2b,c).

Each reaction requires four donor plasmids (or DNA spacers)
for successful assembly into a receiver of the next level. In order
to provide a replacement for assemblies with less than four

fragments, we designed 200-bp-long ‘universal spacer’ parts com-
prising random DNA sequence free of BsaI and SapI sites. Plas-
mids containing spacers with flanking terminal overhangs are
provided for odd (pOdd-spacer) and even (pEven-spacer) levels.
They can be used for direct assembly into any of the four receiver
plasmids of their corresponding level (Fig. S1).

Assembly of synthetic promoters

The recursive nature of Loop assembly allows one to mix parts
from different levels, but with the same parity. For example, a
multimeric promoter might be constructed from elemental parts
through recursive assembly. Figure 3 shows the generation of syn-
thetic promoters by cloning L0 functional domains (e.g. tran-
scription factor (TF) recognition sites and minimum promoter
sequences) with flanking terminal overhangs into specific L1 plas-
mid positions, which determine the order of motif arrangement
in the following L2 assembly. Different TF recognition sites can
be used in positions 1 (a and b overhangs), 2 (b and c overhangs)
and 3 (c and e overhangs), whereas a minimal promoter sequence
is placed in position 4 (e and x overhangs) of L1 receiver plas-
mids. These elements can then be composed in specific order. In
this example, different combinations of TF binding sites and
minimal promoter were cloned into positions 1 (A and B over-
hangs) and 2 (B and C overhangs) of L2 receiver plasmids. The
resulting composite promoter elements could be mixed with stan-
dard L0 gene parts, to create a customized hybrid gene assembly
in an odd level plasmid (Fig. 3a).

Using this approach, we assembled three fluorescent reporters
with synthetic promoters comprising multimeric binding sites.
The promoters included binding domains for the yeast TFs GAL4
(Guarente et al., 1982; West et al., 1984; Giniger et al., 1985) and
HAP1 (Zhang & Guarente, 1994), a cytokinin (CK) operator
(M€uller & Sheen, 2008) and a minimal cauliflower mosaic virus
(CaMV) 35S promoter (Benfey & Chua, 1990) derivative
(F. Federici and J. Haseloff, unpublished results) driving a Venus
fluorescent protein (Nagai et al., 2002). The resulting reporters
were composed of the same elements, but with differing motif
arrangements, containing 13 nucleotide scars between the motifs.
Each reporter contained three dimeric binding domains for GAL4,
three dimeric binding domains for HAP1, one dimeric CK opera-
tor binding domain and the minimal CaMV 35S promoter (see
Notes S1). The composite synthetic promoters, which were the
result of 20 different assembly reactions, were verified through
sequencing and showed no sequence errors. The sequences of the
final constructs (pL3-1_PC1, pL3-1_PC2 and pL3-1_PC3) can
be found in the Supporting Information.

The recursive nature of Loop assembly also enables hybrid
assemblies of multiple TUs derived from donor plasmids from
different levels (i.e. three Level 1 and one Level 3 plasmids). These
can be assembled into a hybrid even receiver plasmid, providing
further flexibility in the fabrication of genetic constructs (Fig. 3b).

UNSs for standardized overlap assembly

Apart from their capacity for Type IIS assembly, Loop vectors
were designed for long-overlap assembly techniques. Loop
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plasmids contain UNSs that allow the use of standard primers for
the amplification of TUs derived from Type IIS DNA parts
(PhytoBricks, MoClo and GoldenBraid), as these can be assem-
bled into UNS-flanked TUs by BsaI-mediated Type IIS assem-
bly. Alternatively, TUs can be assembled from PCR fragments or
DNA synthesis into Loop plasmids by overlap assembly methods,
such as Gibson assembly (Fig. 4a). Each Loop plasmid contains
two flanking UNSs and a terminal UNSx. TUs can be assembled
into a multi-TU destination plasmid (pUNSDest) using overlap
assembly methods (Fig. 4b). UNSs have been designed following
a number of guidelines to provide enhanced performance in
PCRs and overlap assembly. Design rules are listed in Meth-
ods S1 and sequences are provided in Table S6. Forward and
reverse standard primers correspond to the first 20 bp of each
UNS in both forward and reverse complement orientations,
respectively, and are provided in Table S5. UNSs have the

advantage that they are designed for highly efficient PCR with
standard conditions (60°C, 35 cycles), resulting in single ampli-
cons with high yields (Fig. S2). This eliminates the need for gel
purification during the workflow of Gibson assembly, if appro-
priate on-column purification is performed.

Reliability of Loop assembly

To evaluate the reliability of the technique, we tested L1 Type
IIS Loop assemblies in different laboratories, and obtained con-
sistent results (Table 1). We assembled over 200 plasmids using
the Type IIS pathway for Levels 1–3 and obtained average assem-
bly efficiency between 83% and 97%, depending on the level of
assembly and complexity of the constructs (Table 1; Notes S2).
This was evaluated though DNA profiling by means of RE diges-
tion (Fig. S3). Further, we performed Illumina sequencing of 92

L0 parts 1 TU per plasmid 4 TUs per plasmid 16 TUs per plasmid

1 2

3 4

Odd receivers Even receivers Odd receivers

1 2 3 4 2 3 41 1 2 3 4 2 3 41

BsaI SapI

(a)

SapI BsaI

(b)

Even receivers

Kan Spec

4L,2L3L,1L

pEven receiverspOdd receivers

L0 parts

1 2

3 4

1 2

3 4

PhytoBricks
MoClo parts
GoldenBraid parts

BsaI SapI

1 2 3 4 21

Fig. 1 Overview of Loop assembly. (a) Loop assembly workflow. L0 parts are assembled to L1 transcription units (TUs) into one pOdd receiver by BsaI-
mediated Type IIS assembly. L1 TUs are assembled to L2 multi-TUs into one pEven receiver by SapI-mediated Type IIS assembly. This workflow is then
repeated for higher level assemblies. Only four odd level and four even level receiver plasmids are required for Loop assembly. (b) Combinatorial and
exponential assembly. L0 parts can be assembled to L1 TUs into any of the four positions of odd receivers. Genetic modules can easily be swapped in each
TU arrangement and receiver position. L1 TUs can then be assembled into L2 multi-TUs with variable combinations of the L1 TUs, also into any of the four
positions of the even receivers. Each round of assembly generates four assembled plasmids, and consequent rounds of assembly increase the number of
TUs by a factor of four, leading to an exponential increase in TU number.
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Level 2 and Level 3 assembled constructs to validate Loop assem-
bly fidelity at the sequence level, to determine whether the reac-
tion had produced correct assemblies and whether mutations had
been introduced by our method. We found that 95.4% of con-
structs assembled correctly with 98.8% of overhang scars present
at the expected junctions. Overall, 99.8% of nucleotides were
correctly assembled, and the few incorrect constructs showed
missing regions as a result of misassembly, rather than sequence
errors per se (Table S7).

In planta activity of Loop plasmids

Loop vectors were derived from the pGreenII (Hellens et al.,
2000) plant binary transformation vector, but decoupled from
plant selection markers (see the Materials and Methods section),
to enable their introduction during assembly. As in pGreenII,
Loop plasmids contain elements for propagation in
Agrobacterium tumefaciens and are capable of Agrobacterium-
mediated plant transformation. We have tested the application of

Loop constructs in plant developmental biology by assembling
TUs composed of fluorescent proteins, localization tags and
endogenous promoters. This allowed us to highlight cellular fea-
tures and track patterns of gene expression in planta. A Level 2
construct (pL2-1_TPL) containing four TUs composed of a
HygR selectable marker, an mTurquoise2-N7 nuclear-localized
reporter driven by an MpEF1a constitutive promoter (Nagaya
et al., 2011; Althoff et al., 2014), a Venus-N7 nuclear-localized
reporter driven by an MpTPL tissue-specific promoter (Flores-
Sandoval et al., 2015) and an eGFP-Lti6b membrane-localized
marker driven by an MpEF1a promoter was assembled from L0
parts (Table S1) using Loop assembly, and transformed into
Marchantia polymorpha (Marchantia). Regenerated transformants
were obtained and clonal propagules called gemmae were exam-
ined using confocal microscopy. All three fluorescent protein
reporter genes were expressed and allowed the visualization of
distinct cellular and subcellular features across the tissue (Fig. 5).

In addition, four L1 TUs that had been constructed by Type
IIS Loop assembly were assembled into a multi-TU destination
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Fig. 2 Loop assembly schema. (a) Loop receiver plasmids. Each of the four pOdd and pEven receiver plasmids has a specific set of SapI (3 bp) and BsaI
(4 bp) convergent overhangs, respectively, required for higher level assembly. Odd receivers contain diverging BsaI restriction sites and terminal overhangs
according to the common syntax, making them compatible for cloning L0 parts into pOdd plasmids. They contain SapI converging sites with donor
overhangs for directing SapI-mediated Type IIS assembly into even level receivers. pEven plasmids have SapI diverging restriction sites and terminal
overhangs to receive parts from pOdd plasmids. For higher level assemblies, pEven plasmids contain converging BsaI sites with donor overhangs for BsaI-
mediated Type IIS assembly into pOdd plasmids. (b) Loop odd level assembly. L0 DNA parts containing overhangs defined in the common syntax are
assembled into a Loop odd level receiver. BsaI digestion releases the DNA modules, which are assembled into an even level receiver by directional assembly
defined by 4-bp overhangs. pOdd plasmids contain A and F overhangs as terminal overhangs for receiving parts, which are flanked by convergent SapI
restriction sites with 3-bp donor overhangs for further assembly. (c) Loop even level assembly. Four previously assembled pL1 transcription units (TUs) are
assembled into a pEven plasmid. SapI digestion releases TUs from pL1 plasmids, which are assembled into an even level receiver by directional assembly
defined by 3-bp overhangs. pEven plasmids contain a and x overhangs as terminal overhangs, which are flanked by convergent BsaI restriction sites with
donor overhangs defined in the common syntax required for further assembly.
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plasmid using Gibson assembly. Transfected protoplasts showed
the expression of the engineered fluorescent reporters in their
expected localizations (Fig. S4), providing a fast and efficient sys-
tem to evaluate the functionality of Loop constructs. Plasmid
maps for the constructs are provided in Fig. S5.

Loop assembly design automation

We have developed software tools to aid Loop assembly experi-
ments. We developed LOOPDESIGNER, a web application that
facilitates: (1) the sequence design and domestication of Level 0
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Fig. 3 Hybrid assembly. (a) Synthetic promoter assembly. L0 functional domains flanked by terminal overhangs are assembled into odd level receivers in
any given position. L1 motifs are then assembled into L2 composites with differing arrangements into positions 1 and 2. L2 composites in positions 1 and 2
are used in a hybrid assembly with L0 parts to generate a hybrid odd level transcription unit (TU) with a synthetic promoter composed of the L0 functional
domains in the defined arrangement. (b) Mixed level assembly. L3 and L1 parts are assembled into an even level receiver generating a hybrid even level
multi-TU plasmid.
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DNA parts; (2) the generation of a Loop assembly parts database;
and (3) the simulation of Loop assembly reactions and the result-
ing plasmid maps and sequences (Fig. 6). Input L0 sequences are
domesticated by identifying unwanted RE sites and removing
them by the introduction of synonymous mutations. Appropriate
BsaI overhangs are added according to the rules of the common
syntax for DNA parts and stored in the parts database. (See
Materials and Methods for a detailed description of the
LOOPDESIGNER implementation.) We invite readers to visit the
LOOPDESIGNER web tool available at loopdesigner.herokuapp.-
com (supported in Google Chrome) for exploring Loop assembly
techniques. The source code of LOOPDESIGNER is available at
GitHub (https://github.com/HaseloffLab/LoopDB LOOPDESIGNER

branch), and provided under a Massachusetts Institute of
Technology (MIT) license.

Discussion

The design of Loop assembly was inspired by existing assembly
methods, such as GoldenBraid, MoClo and standardized Gibson
assembly. We attempted to integrate these techniques into a gen-
eral-purpose DNA assembly system. Loop assembly combines
the recursive use of two restriction enzymes and plasmid sets
which, together, create a simple and versatile Type IIS assembly
platform. Type IIS RE sites are employed in head-to-head config-
urations, eliminating the requirement for end-linkers used in
MoClo systems. Instead, restriction sites for successive levels are
integrated in receiver plasmids, as in GoldenBraid, but using qua-
ternary assembly parity instead of binary. This enables the faster
assembly of large constructs, but demands all four positions to be
filled by either TUs or by spacers. Fixing the number of donor
parts allows systematization without increasing the complexity of
assembly, with standardized reactions containing a determined
number of DNA parts and overhangs. Further, the recursive
nature of Loop assembly enables the usage of a compact plasmid
library, whilst providing versatile construction strategies. We
show the use of recursive assembly for the fabrication of complex
DNA, such as synthetic promoters composed of repetitive

sequences and hybrid levels. Type IIS restriction sites in the Loop
vectors are flanked by standardized UNSs, enabling the use of
Loop vectors with overlap assembly methods and the reuse of
oligonucleotides for assembly. This provides users of Gibson and
overlap assembly methods with the capacity to tap into libraries
of domesticated DNA parts already available. We have demon-
strated the high efficiency of Loop assembly by generating a vari-
ety of constructs with different numbers of TUs, achieving
reliable assembly of constructs up to 16 TUs composed of 56
individual parts. In addition, we have used Loop assembly for the
generation of multispectral reporter constructs and have shown
their activity in planta.

The use and characterization of the products of Loop assembly
demonstrates that it is a robust and reliable DNA assembly sys-
tem regardless of the levels and types of parts. Loop assemblies
varying in size, total number of fragments and DNA composition
were performed in order to provide an accurate estimate of the
method performance in routine use. The high rate of successful
assemblies, even in the absence of cPCR pre-selection, consider-
ably decreases the effort and time required for DNA construc-
tion. Further, the system takes advantage of (1) a common syntax
for DNA parts, (2) a simple, recursive assembly scheme, (3) a
small set of plasmid vectors and (4) streamlined protocols, to
provide a streamlined and logical framework for assembly that
will enable rapid adoption by students and nonspecialists. As
Loop assembly integrates Type IIS and overlap assembly, it
encourages the development of a community around a DNA
construction system, yielding a growing collection of DNA parts
and composites. The wide compatibility of Loop assembly facili-
tates proper curation and improvement of DNA part collections
through collaboration, easier exchange and transfer of genetic
modules between laboratories, and cross-validation. The ability
to use either overlap or Type IIS assembly provides further flexi-
bility in making DNA constructions in which sequence alter-
ations introduced by the removal of illegal RE sites are not
desirable (such as for experiments involving native genetic
sequences), or when the assembly fails by one of the pathways.

Although the falling costs of DNA synthesis suggest that the
DNA synthesis of transcriptional units or even chromosomes
might eventually be time and cost-effective, synthetic biology
requires the capacity for rapid, high-throughput and combinato-
rial assemblies. This is necessary for the characterization and trou-
bleshooting of smaller DNA parts and circuits before compiling
high-level devices and systems. Assembly systems that are tailored
to exploit the opportunities provided by automation technologies
will undoubtedly benefit from robotics platforms. Automated
design and liquid handling platforms for the fabrication of DNA
constructs have already been adopted by some, and the technolo-
gies are rapidly expanding: at the high end of the market, plat-
forms such as the Echo (Labcyte) are enabling miniaturization
and increasing throughput, yielding a substantial reduction in
reaction costs (Kanigowska et al., 2016), whereas low-cost plat-
forms, such as the OT-One S (OpenTrons), are aiming to make
automated pipetting affordable in every laboratory.

To enable the facile design of constructs, we have developed
LOOPDESIGNER, a software framework that provides an interface

Table 1 Loop assembly efficiency.

Level
Constructs
(no.)

TU
(no.)

Average
length
(bp)

Overall
efficiency*
(%)

Average
efficiency†

(%)

Lab 1
L1 104 1 6243 96 97
L2 79 4 13 519 82 88
L3 23 16 26 731 81 83
Hybrid 3 Var. 5473 100 100

Lab 2
L1 14 1 5570 91 91
UNS overlap 5 4 12 548 71 71

*Overall efficiency calculated as the total number of samples with correct
restriction digest (RD) patterns over the total number of samples tested.
†

Average efficiency calculated as the mean of correct RD patterns over the
number of samples tested per construct.
TU, transcription unit; UNS, unique nucleotide sequence.
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between digital design and experimentation. We have demon-
strated the usefulness of LOOPDESIGNER by implementing a sim-
ple web tool via which users can design assembly strategy and run
virtual reactions before stepping into the laboratory. The

LOOPDESIGNER framework allows the definition of Loop assembly
schemas of arbitrary complexity, with any number of levels and
plasmids per level, as well as with any possible restriction enzymes
and overhangs. In this sense, LOOPDESIGNER generalizes the

proMpEF1α:mTurquoise2-N7proMpTPL:Venus-N7proMpEF1α:eGFP-Lti6b

 Blue  Green Red

Merged

200 µm

Fig. 5 In planta activity of a Loop assembly construct.Marchantia gemmae transformedwith an L2 construct was imagedwith a Leica SP8 laser scanning
confocal microscope to assess the expression of fluorescent markers. mTurquoise2-N7, Venus-N7 and eGFP-Lti6b were excited with appropriate wavelengths
and fluorescencewas captured in their respective emissionwindows in sequential scanningmode. Images shown are Z-stackmaximum intensity projections.
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concept of the assembly, so that the assembly schema presented
in this article becomes a single instance of many possible imple-
mentations of the Loop assembly, allowing for the exploration of
novel ways of assembling DNA parts through Type IIS strategies.

DNA construction has been traditionally coupled with the
concurrent use of plasmids in model organisms. Loop assembly
provides additional throughput and versatility for working with
general-purpose backbones, to which users can add specific new
functions, for example, parts for transfection. Vectors could be
decoupled from specific uses by modularizing replication origins
and selection markers as basic DNA parts and introducing host-
specific elements during the assembly process. This would
provide higher flexibility during design, and allow the switching
of selection markers when super-transformation is required, for
instance. Such approaches would make the DNA fabrication pro-
cess host-agnostic, promoting the development of universal DNA
assembly systems using standards such as the common syntax,
which would provide unprecedented exchange of DNA compo-
nents within the biological sciences.

Until recently, the majority of materials for research were
exchanged under a Uniform Biological Material Transfer Agree-
ment (UB-MTA). This is a bilateral legal agreement which, in its
standard form, does not allow redistribution, exchange or use
with those outside of educational and research organizations. At
the same time, in scientific publishing and in software, there is a
trend towards openness to facilitate collaboration and translation
of basic research. An excellent example of how the open source
philosophy has powered and enabled innovation is exemplified
by community-based coding projects, such as those hosted by
Github (https://github.com). Git was originally developed for the
purpose of distributed software development, and nowadays most

collaborative projects, both in the public and private sector, use
Git as an underlying framework. It is unlikely that we will see
similar success in DNA engineering and synthetic biology unless
new forms of unrestricted DNA sharing and assembly are estab-
lished under more open frameworks, such as the OpenMTA. We
support the adoption of an open-source inspired L0 elemental
part exchange by providing Loop assembly for the higher level
construction of these L0 components under an OpenMTA
framework. Work to establish the OpenMTA will ensure access
to the Loop assembly system for work in both the public and the
private sector.
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