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ABSTRACT: Microbial biofilms are complex, self-organized
communities of bacteria, which employ physiological cooperation
and spatial organization to increase both their metabolic efficiency
and their resistance to changes in their local environment. These
properties make biofilms an attractive target for engineering,
particularly for the production of chemicals such as pharmaceutical
ingredients or biofuels, with the potential to significantly improve
yields and lower maintenance costs. Biofilms are also a major cause
of persistent infection, and a better understanding of their
organization could lead to new strategies for their disruption.
Despite this potential, the design of synthetic biofilms remains a
major challenge, due to the complex interplay between transcriptional regulation, intercellular signaling, and cell biophysics.
Computational modeling could help to address this challenge by predicting the behavior of synthetic biofilms prior to their
construction; however, multiscale modeling has so far not been achieved for realistic cell numbers. This paper presents a
computational method for modeling synthetic microbial biofilms, which combines three-dimensional biophysical models of
individual cells with models of genetic regulation and intercellular signaling. The method is implemented as a software tool
(CellModeller), which uses parallel Graphics Processing Unit architectures to scale to more than 30,000 cells, typical of a 100 μm
diameter colony, in 30 min of computation time.
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Bacteria form self-organized communities termed biofilms,
which are composed of cells embedded in a secreted

extracellular matrix.1 Cells in a biofilm differentiate phenotypi-
cally through spatially patterned gene expression2 and can form
elaborate morphological structures.3 This behavior is coordi-
nated by many forms of signaling, including quorum sensing,
the production and sensing of diffusible small molecules4 or
peptides,5 and the contact-based signaling of myxobacteria.6

Downstream regulatory processes, including transcriptional
regulation and biophysical interactions between individual cells,
are also important.
Biofilms achieve metabolic efficiency by employing physio-

logical cooperation similar to that observed in the tissues of
multicellular organisms and are also less sensitive to changes in
their local environment than planktonic cultures. Both of these
properties make biofilms an attractive target for engineering.
Synthetic biofilms could be engineered for the production of
chemicals such as pharmaceutical ingredients or biofuels,
resulting in improved yields, lower maintenance costs, and
the ability to implement more complex pathways. Biofilms are
also a major cause of persistent infection, and an understanding
of their organization could lead to new strategies for their
disruption.7

A key factor in the efficiency and robustness of biofilms lies
in their spatial organization.1 Biofilm initiation begins with
surface attachment, followed by microcolony formation.1

Colonies then go on to form elaborate structures, such as

water channels1 and mushroom-like stalks.8 These structures
have been examined in model systems such as Pseudomonas
aeruginosa, using confocal microscopy at the microcolony stage,
and during the development of mushroom structures.9 Flow
conditions are also known to affect the organization and
morphology of biofilms and can be studied using microfluidic
flow-channels.9 Similar techniques have also been used to
examine spatiotemporal dynamics of synthetic bacterial
populations.10

Because of the dependence of morphology and patterning on
cell growth and division, the design of synthetic biofilms
requires the ability to predict population behaviors at single cell
resolution. The diffusion limited aggregation (DLA) model was
applied in early work on colony morphology, in which local
depletion of nutrients gave rise to fractal morphologies.11

However, this model does not explicitly take into account cell
shape and orientation. Several studies have also used cellular
simulations to model biofilm metabolism12 or to show the
effects of constraints such as bacterial growth channels on the
spatial arrangements of cells depending on cell shape and
size.13−15 More recently, there have also been attempts to
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model the interaction of such physical constraints with genetic
regulation and signaling.16,17

Despite this progress, one of the major obstacles to designing
synthetic biofilms is the number of cells in the biofilm. For a
typical microcolony there can be 104−105 cells, making
simulation highly computationally intensive. We have devel-
oped a rigid-body method that includes growth of cells, which
results in a sparse matrix inversion problem amenable to
parallel numerical solution.
The recent development of general purpose computing on

Graphics Processing Units (GPUs) has enabled the simulation
of large-scale parallel problems on commodity hardware, with
very large numbers of parallel threads. Modeling large isogenic
cell populations is ideally suited to this computational model.
The OpenCL cross-platform framework enables implementa-
tion of parallel software that runs efficiently on both GPU and
CPU architectures.18 Furthermore, OpenCL’s use of run-time
compilation supports flexible and dynamic simulation algo-
rithms, which are well-suited for a design methodology.
We have implemented this method as part of the

CellModeller software tool for multicellular modeling, using
OpenCL for parallel computation. This parallel framework
allows us to run large scale simulation of biofilms. The software
includes models of biophysics, genetics, and intercellular
signaling. Starting from a single cell it can simulate the
development of colonies containing 30,000 individual cells in
30 min. It reproduces the main features of large scale colony
morphology and can simulate realistic experimental growth
conditions with fluid flows and hard or soft physical constraints.
Built on the same principles as our previous multicellular
methods,19,20 CellModeller4 allows specification of cell behavior
through both rule-based and differential equation models.

■ RESULTS

Modeling Framework. We have developed a modular
framework for the combined modeling of intracellular
dynamics, intercellular signaling, and cellular biophysics. Each
of these components can change the internal and external
environment of a cell, and these changes can in turn propagate
to other components via multiple feedback loops. For example,
a cell may sense its local signal concentration and activate
transcription, which could affect growth, moving the cell and
changing its local signal concentration. This change in
concentration could itself affect transcription, resulting in a
feedback loop.
In simulations of biofilms, each cell is coupled to many

others through biophysical interactions and signaling. Since
growth occurs on a longer time scale than biochemical
interactions, we update growth in discrete steps, and solve for
the intracellular and signaling system separately. After each
biophysical step, the state of each cell (position, volume etc.) is
updated, and the intracellular and signaling systems are
integrated forward by the appropriate time step.
Even though the simulation is highly coupled, cells of a given

type are applying the same rules and differential equations to
their current state. It is natural then to apply a single instruction
multiple data (SIMD) approach to compute the contribution of
each cell to the overall simulation in parallel.
The various components of the framework are combined in

the following procedure:

1. Call an update function to apply user-defined rules to
each cell.

2. Divide cells that have their divideFlag set to True.
3. Integrate the growth of cells forward by a chosen time

step Δt, solve constraints to obtain new cell positions.
4. Integrate the species and extra-cellular signals u ⃗ of each

cell forward by the time step Δt.
5. Update the state variables of each cell and repeat from

step 1.

Cell Biophysics. Rod-shaped bacteria maintain highly
consistent forms of roughly constant radius, with growth
occurring exclusively on the long axis. This shape can be
approximated by a cylinder capped with hemispherical ends,
called a capsule. In typical growth conditions, cells exhibit very
little deformation so that they are well-approximated by rigid,
elongating capsules. This observation led us to formulate a
novel constrained rigid-body dynamics method, in which cell
length is included as a degree of freedom. In the conventional
rigid-body approach, the cell would be described at a given time
t by its state x ⃗:

ϕ ϕ ϕ⃗ =x t c c c( ) ( , , , , , )x y z x y z
T

(1)

where (cx,cy,cz)
T is the position of the center of mass, and

(ϕx,ϕy,ϕz)
T is the orientation. In our scheme we include the cell

length L, so that

ϕ ϕ ϕ⃗ =x t c c c L( ) ( , , , , , , )x y z x y z
T

(2)

Let us call this the generalized position of the cell.
Each cell grows at some rate L̇, and for exponentially growing

cells L̇ ∝ L.21 For small time periods we linearize this growth
rate so that L̇ is a constant. Note that integrating L̇ forward in
time would cause neighboring cells growing toward each other
to overlap. The change in generalized position required to
prevent this overlap can be formulated as a linear system:

εΔ ⃗ + ⃗ = ⃗ =x dJ 0 (3)

where d ⃗ are the overlap distances for pairs of cells, the matrix J
(ncontacts × ncells) encodes the change in overlap for a given
change in position (Δx ⃗), and ε ⃗ is the resulting overlap after the
position change (see Supporting Information for details). We
include plane constraints in this system as additional rows, with
the entry in d ⃗ the penetration distance into the plane.
Equation 3 is an ill-posed underdetermined linear system,

and so we compute the regularized least-squares solution by
minimizing ∥ε∥⃗2. In order to model soft constraints such as an
agarose substrate, we apply a diagonal weight matrix ∥Dε∥⃗2,
with Dij < 1 for soft constraints, Dij = 1 otherwise. This is
analogous to elastic constraints with relative stiffness matrix K =
D2

In the low Reynolds number regime appropriate to bacteria,
viscous drag dominates inertia, and cells will move by a distance
proportional to the impulse applied to them. Thus, for given x ⃗
and d ⃗ we solve for the impulse Δp⃗ that must be applied to each
cell to satisfy the constraint eq 3:

εΔ ⃗ + ⃗ = ⃗ =− p dJM 01
(4)

where M is a matrix containing the viscous drag coefficients,
including a viscocity term accounting for the cell’s resistance to
change in length. We regularize the least-squares solution of 4
by minimizing Δp⃗TM−1Δp ⃗. (See Supporting Information for a
full mathematical description.)
The matrices J and M are sparse and structured so that eq 4

is well suited to solution by a matrix free iterative method. In
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this approach, the full matrix is not stored, but matrix-vector
products are computed as needed to update the iteration. GPU
solution of such sparse matrix linear systems has been shown to
give significant speed up.22 In our system these matrix-vector
products are sums over each cell’s contacts and can therefore be
computed in parallel.
We implemented this implicit matrix multiplication calcu-

lation in OpenCL and used it to iterate a conjugate gradient
solver. We also used OpenCL to efficiently find pairs of
contacting cells with a spatial grid-based approach, where
collisions need only be tested for cells within a neighborhood
on the grid. Full details of these algorithms and their
implementation can be found in Supporting Information.
At cell division, each dividing cell is replaced with two cells of

half the length of the parent, such that they occupy the same
space. In order to simulate imperfections in cell shape and
alignment, a small amount of noise (0.1%) is the added to the
direction vector of each daughter cell.
Microcolony Morphology. We used our rigid-body

method to compare model simulations of microcolony
morphology with experimental results. Early stage biofilms
form microcolonies after attachment of a single cell to a surface.
This situation can be produced experimentally by initiating
colonies from dilute liquid culture on an agarose pad with a
coverslip placed on top. In this way single cells expressing
fluorescent protein can be isolated, and using confocal
microscopy their development into microcolonies can be
tracked in 3 dimensions over time. Figure 1 shows a typical
colony developing over around 18 h at room temperature. The
form is circular, with a dome shaped profile extending into the

agarose. Alignment of cells is typically in-plane, with some cells
forced into near vertical orientations.
Our model reproduces this form, including the orientation of

cells. Figure 2 shows arrangements of cells, with vertical cells

appearing as circles. To approximate the experimentally
measured variation in the length of newborn E. coli cells,23,24

simulations were based on a simple rule that cells grow at the
same rate and divide when their length reaches a uniformly
distributed threshold in the range of 3.5−4.5 μm. We simulated
the microscopy conditions by introducing two plane con-
straints. A soft plane constraint below the cells modeled the
agarose pad on which they were grown. A hard plane constraint
above the cells modeled the coverslip.
The final colony contains approximately 32,000 cells and was

computed in around 30 min, showing that our parallel method
allows simulations of systems large enough to demonstrate
colony-stage biofilm morphology. The simulation time required
to obtain a cell colony of a given size, starting from a single cell,

Figure 1. Confocal images of E. coli colonies compared with simulation results. (a−f) E. coli expressing ECFP on a medium copy plasmid (p15a
origin), grown at room temperature. Images taken 2 h apart, beginning 6 h after inoculation. Yellow lines in panels a−c show the location of XZ
slices shown in panels d−f. (g−l) Simulation of colony initiated from single cell in microscopy conditions. Final cell number ∼32,000. Total
computation time around 30 min. Scale bar in panel a: 30 μm. All images at the same scale.

Figure 2. Cell arrangements in (a) an E. coli colony and (b) a
simulation. Each image is on the same scale. Scale bar: 10 μm.
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is shown in Figure 3. Simulation time increases with the
number of cells in the colony due to portions of the algorithm

being implemented on a CPU, which incurs an overhead that
increases with colony size. Despite this overhead, the GPU
implementation of matrix vector products allows for significant
speedup.22 For comparison, a recent study on simulation of
spherical cell populations reported computation times of
around 40 h to simulate 105 cells,17 compared to around 2.5
h for our method (see Figure 3).
Rule-Based Cell Behavior. Although there are numerous

and complex regulatory mechanisms that determine cell
behavior, in many cases we do not need to model these
mechanisms explicitly. Instead, it is often sufficient to consider
empirically derived rules for these processes. In our method we
allow the definition of such rules in the Python programming
language, by defining a suitable update function. For
example, the following update function applies the rule that
all cells grow at a relative rate of 0.035 min−1 (equivalent to a
doubling time of 20 min), and divide when they reach a volume
of 3 μm3.

This update is called at each simulation step with the current
list of cells. It can be modified at run-time and immediately
applied, meaning that models can be interactively developed
while they are running.
Each cell contains a standard set of state variables listed in

Table 1, and because Python is flexibly typed, the user can also
create new variables. More complicated rules can be developed
in a number of ways, including introducing random variation,
partitioning into cell types, and using the outcome of
differential equation models.
When a cell’s divideFlag is equal to True it is divided

into two daughter cells. By default each cell inherits the state
variable values of its parent. The user also can specify a

divide(parent, daughter1, daughter2) func-
tion, which can be used to implement specific models of
division. For example, the random partitioning of a molecular
species between two daughter cells following cell division could
be modeled as follows:

The flexibility of the cell state structure, including allowing
user-defined variables, means that a broad range of cell behavior
rules can be encoded, such as differentiation and inheritance.

Programmed Growth. We used our rule-based method to
model programmed growth of a microcolony. One of the goals
of engineering biofilms is to generate novel morphologies by
spatially organized growth. This growth would be organized by
patterns of gene expression triggering growth effectors, which
could be metabolic processes. As a first step we explored the
effects of growth rate on colony morphology by imposing
patterns of gene expression. Such imposed patterns have
already been achieved with light-sensing phytochromes.25,26

Although we do not have growth effectors or a full design for
programmed induction, one of the powerful aspects of rule-
based modeling is that we can still explore the possible effects
of programmed morphology. Starting from a single cell, we use
the update function to specify a rule that only cells within 10
μm of the rightmost edge of the colony are able to grow. In
practice this could be imposed with a moving mask of exposure
to the appropriate wavelength of light for the phytochrome,
with only exposed cells triggered to grow. The result (Figure 4
and Supplementary Video) shows meristem-like properties,
with the growing cells propelled to the right.

Intracellular Dynamics and Signaling. Our method can
be used to model the operation of synthetic constructs, such as
transcription regulation circuits, in a cellular biofilm context.
Depending on the construct in question, different levels of
abstraction may be appropriate. In some cases the activity of
cells may be abstracted to simple rules, for example, to study
the effects of growth rate on colony morphology. In other cases
a more detailed model is required, for example, to study the
behavior of transcription networks in cell colonies.

Figure 3. Simulation time for cell colonies of different sizes. Each
point on the graph denotes the time in minutes for a cell colony of a
given size to be simulated by CellModeller, starting from a single cell.

Table 1. Each Cell Is Described by the Following state
variables, to Which Rules May Be Applied

name usage meaning

pos read centre of mass of cell
dir read orientation of cell
length read length (μm)
radius read radius (μm)
volume read volume (μm3)
area read surface area (μm2)
species read list of internal species concentrations
signals read list of local signal concentrations
cellType read/write integer cell type identifier
growthRate read/write relative growth rate of cell (min−1)
divideFlag read/write triggers cell division when True

* read/write User-defined variables
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Intracellular dynamics are commonly approximated by
ordinary differential equations, which have been shown to
accurately reproduce experimental observations in a broad
range of synthetic systems. Examples include transcriptional
oscillators,27 quorum-sensing systems with predator−prey
interactions,28 and RNA-regulated genetic devices.29 Despite
this success, the limitations of ordinary differential equations
are well-documented, particularly with regards to variability in
gene expression.30 While variability between cells can be
simulated in CellModeller by introducing randomness at
specific events, such as the partitioning of a molecular species
between daughter cells during cell division, variability at the
level of gene expression would be more accurately modeled
using stochastic simulation methods. Although such methods
are highly computationally intensive, various parallel algorithms
for their implementation have been proposed (see ref 31 for
example). Here we suggest that the stochastic reactions
occurring in each cell could be simulated in parallel, rather
than realizing a single stochastic trajectory. We leave the
implementation of this proposal for future work.
For a given synthetic construct, we represent the processes

that require detailed modeling as a system of differential
equations, with each equation describing the rate of change of a
species. In general, and most commonly for genetic circuits, this
system is nonlinear, where the rate of change of the vector of
species u ⃗ is of the form

⃗ = ⃗
u
t

f u
d
d

( )
(5)

Our approach is to solve this general case, with the function f
specified by the user. This is computationally intensive, and we
use the OpenCL parallel programming language to compute
f(ui) for each cell i in parallel. The user must specify simple
OpenCL code to define the rate of change of each species.
Cell signaling is a key part of multicellular organization. In

the biofilm mode of growth, cells communicate via quorum
sensing ligands that diffuse through the biofilm and medium,
after being secreted from the cell. Depending on the
environment in which the biofilm is growing, there may also
be other transport processes, such as bulk flow or advection.
We include such signaling through the medium in our
algorithm with a general linear transport operator T:

⃗ = ⃗ + ⃗
u
t

u f uT
d
d

[ ] ( )
(6)

where u ⃗ is now composed of some species that are within a cell
(and are not transported) and those outside the cell, which are
subject to the operator T. For example, in the case of diffusion
T ≡ K∇2, where K is a diagonal matrix of diffusion coefficients
for each species, and for cell autonomous species the
corresponding element of K is zero.
We discretize this system on a regular 3-dimensional grid for

species in the medium and separate variables representing cell-
autonomous species. Cell positions are interpolated linearly in
the spatial grid, and each cell can see its local signal
concentration (see Table 1). The user writes the function
f(u) for each cell including, for example, importing or exporting
signal and downstream transcriptional regulation. Table 2
shows example function definitions for a simple model of the
Lux quorum sensing system.

We solve the resulting system of nonlinear partial differential
equations using a modified Crank−Nicholson method (see
Supporting Information). Our method solves the update step
numerically, meaning we can define any linear transport
operator in a modular fashion, such as adding an advection
or bulk flow term in direction ⃗ ̂n :

⃗≡ ∇ + ̂·∇nT K C2 (7)

Figure 4. Three snapshots of a simulation of controlled growth, where
only cells within 10 μm of the rightmost edge of the colony are able to
grow (yellow). This could be achieved by optical induction of a
phytochrome system linked to metabolic control genes. Total
computation time was 28 min. (See Supporting Information for a
video of this simulation.).

Table 2. Specification of Differential Equations for OpenCL
Solvera

aInternal species levels and local signal concentrations, as well as cell
surface area and volume, are available to use in the expressions. Here,
in sigRateCL internal AHL is exported into the medium via the
membrane (hence surface area term), and concentrations must be
scaled for the change in volume. In specRateCL, LuxI production is
induced by AHL, and internal AHL is synthesized from LuxI. Function
definitions are returned as strings, which are then compiled at run-time
into OpenCL.
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where C is the matrix of flow rates for each species.
Domain Boundary Detection. We used this approach to

model domain boundary detection, by examining the growth of
two communicating cell populations in a microfluidic channel.
Maintenance and refinement of boundaries between such
cohorts of cells is known to be critical in developmental
systems32 and thus also important for engineering multicellular
behaviors. Microfluidic growth channels have been used
experimentally to study bacterial biophysics15 and to observe
synthetic genetic circuits.10 Like the system constructed by
Tabor et al.,25 this system is designed to detect an edge
between cell populations by sensing a diffusing signal, but it
additionally incorporates degradation of the signaling molecule
to decrease the width of the edge detected. One population, the
source, constitutively produces LuxI, an intracellular enzyme
that synthesizes the signaling molecule AHL. The other
population, the sink, constitutively produces the intracellular
enzyme AiiA that degrades AHL. Both populations express

LuxR, a transcription factor that activates transcription from the
lux promoter in the presence of AHL and respond to the
presence of AHL by producing a fluorescent protein (CFP for
source, YFP for sink). Figure 5 gives more detail.
The result is a band of high YFP expression at the border of

the two domains. Constrained growth in the channel forces
cells to grow along its length, and the marked border appears
perpendicular. The irregular boundary between the two
domains shows the effect of individual cell geometry. Such
irregular boundaries are sharpened in developmental systems
by, for example, interdomain signaling.32 Our model could
provide a framework for designing synthetic sharpening
mechanisms of this kind.

■ DISCUSSION

In this paper we have presented a method for the simulation of
biofilm-scale bacterial populations, together with an efficient
software implementation of this method. The primary

Figure 5. Detection of the boundary between two populations of cells. Both populations sense the presence of the signaling molecule. The “source”
cells (cyan) constitutively produce the signal, and the “sink” cells (yellow) constitutively degrade it. Because of degradation, only the sink cells on the
boundary of the two populations detect signal. (a) Three snapshots of a simulation of the domain boundary detector. Cells are constrained to a
single plane in a microfluidic channel. Intensity of color indicates fluorescent protein levels in individual cells. Background indicates AHL level in the
environment with white lowest and black highest. (b) Diagram of the simulated system. AHL (gray hexagons) acts as the signaling molecule, which
passively diffuses across the cell membrane. LuxI synthesizes AHL, and AiiA degrades it. LuxR binds internal AHL and induces expression of a
fluorescent reporter (CFP for sources or YFP for sinks). (c) The system of differential equations used to implement the simulation in CellModeller.
Total computation time 20 min. (See Supporting Information for a video of this simulation.)
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difficulties in simulating large bacterial populations are (i)
numerical stability of the solution to the simulated system,
which we solve by a novel adaptation of rigid-body dynamics,
and (ii) speed of simulation, which we solve by implementing
our method in a highly parallel fashion using OpenCL and GPU
architectures. Our software reproduces the morphology of
actual bacterial colonies and can simulate varied experimental
conditions such as growth in a microfluidic channel and
optically controlled gene expression.
Our method allows models of biophysics, intracellular

dynamics, and intercellular signaling to be programmed via
discrete rules and systems of differential equations. Although
these models are programmed manually at present, we are
currently extending our framework to allow models to be
imported using a standard interchange format, the Systems
Biology Markup Language (SBML).33 Future work will also
involve a close integration of our framework with the Genetic
Engineering of Cells language (GEC),34 so that dynamic
models of microbial cells can be automatically generated from a
high-level system design. Such integration would provide
increased automation for the design of synthetic biofilms, by
allowing computational models of cell behavior to be derived
from a design expressed as a composition of characterized
genetic parts. The construction of candidate designs that exhibit
the desired behavior in simulations would then consist of
assembling the given parts, providing a close link between
design and implementation.
The emergent properties exhibited by thousands of growing,

signaling, and responding bacterial cells are central to the
rational design of synthetic biofilms. Such emergent behavior is
extremely difficult to predict and will require the development
of realistic, scalable simulation methods. We have presented a
first attempt at developing such a method and demonstrated its
scalability and flexibility for modeling the emergent behavior of
multicellular synthetic biological systems.

■ METHODS

Computation. CellModeller4 is our software framework for
multicellular modeling. It incorporates the model presented
here, as well as biophysical models of plant cells19,20 in a
modular fashion. Further information and downloads can be
found at www.cellmodeller.org. The software was written in
Python and OpenCL using the packages pyopencl,35 Numpy,36

and Scipy.37 Simulations were performed on a Hewlett-Packard
Z800 workstation with an NVIDIA Quadro FX5800 graphics
card. Using OpenCL means that the software will run on a large
range of GPU and CPU architectures, and the Python
implementation is cross-platform with respect to operating
systems.
Microbial Cultures. E. coli strain E Cloni 10G (Invitrogen)

was transformed with plasmid pSB3K3 from the Registry of
Standard Biological Parts.38 The insert consisted of constitutive
promoter BBa_J23101, ribosome binding site BBa_0034
followed by ECFP coding sequence (BBa_E0020) and
transcriptional terminator BBa_0015. Cultures were grown in
M9 minimal medium supplemented with 0.4% w/v glucose,
0.2% w/v casamino acids, and 50 mg/mL kanamycin to OD600
of approximately 0.1. These cultures were then diluted by 103,
and 10 μL was placed on a pad of 1.5% w/v agarose in selective
medium. The pads were prepared on microscope slides as
described by de Jong et al.39 with multiple frames to increase
agarose volume.

Microscopy. Prepared slides were grown at room temper-
ature and imaged every 2 h, for a total of 18 h. Imaging was
performed with a Leica SP5 laser scanning confocal microscope
in upright configuration, using a 40X Plan Apo NA 1.25 oil
immersion objective to take 1024 × 1024 × 20 image stacks at
each time point. ECFP (emission peak 434 nm) was excited
with the 458 nm line of an argon ion laser.
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(3) Branda, S. S., Gonzaĺez-Pastor, J. E., Ben-Yehuda, S., Losick, R.,
and Kolter, R. (2001) Fruiting body formation by Bacillus subtilis.
Proc. Natl. Acad. Sci. U.S.A. 98, 11621−11626.
(4) Fuqua, C., Winans, S., and Greenberg, E. (1996) Census and
consensus in bacterial ecosystems: The LuxR-LuxI family of quorum-
sensing transcriptional regulators. Annu. Rev. Microbiol. 50, 727−751.
(5) Kleerebezem, M., Quadri, L. E. N., Kuipers, O. P., and deVos, W.
M. (1997) Quorum sensing by peptide pheromones and two-
component signal-transduction systems in Gram-positive bacteria.
Mol. Microbiol. 24, 895−904.
(6) Kaiser, D. (2004) Signaling in Myxobacteria. Annu. Rev. Microbiol.
58, 75−98.
(7) Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1999)
Bacterial biofilms: A common cause of persistent infections. Science
284, 1318−1322.
(8) Chiang, P., and Burrows, L. L. (2003) Biofilm formation by
hyperpiliated mutants of Pseudomonas aeruginosa. J. Bacteriol. 185,
2374−2378.
(9) Pamp, S. J.; Sternberg, C.; Tolker-Nielsen, T. Insight into the
microbial multicellular lifestyle via flow-cell technology and confocal
microscopy. Cytometry, Part A 2009, 75A, 75A, 90, 90−103, 103.
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Sparse matrix solvers on the GPU: conjugate gradients and multigrid.
ACM Trans. Graph. 22, 917−924.
(23) Cullum, J., and Vicente, M. (1978) Cell growth and length
distribution in Escherichia coli. J. Bacteriol. 134, 330−337.
(24) Reshes, G., Vanounou, S., Fishov, I., and Feingold, M. (2008)
Timing the start of division in E. coli: a single-cell study. Phys. Biol. 5,
046001.
(25) Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A.,
Levskaya, A., Marcotte, E. M., Voigt, C. A., and Ellington, A. D. (2009)
A synthetic genetic edge detection program. Cell 137, 1272−1281.
(26) Tabor, J. J., Levskaya, A., and Voigt, C. A. (2011)
Multichromatic control of gene expression in Escherichia coli. J. Mol.
Biol. 405, 315−324.
(27) Elowitz, M. B., and Leibler, S. (2000) A synthetic oscillatory
network of transcriptional regulators. Nature 403, 335−338.
(28) Balagadde,́ F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M.,
Arnold, F. H., Quake, S. R., and You, L. (2008) A synthetic Escherichia
coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187.
(29) Carothers, J. M., Goler, J. A., Juminaga, D., and Keasling, J. D.
(2011) Model-driven engineering of RNA devices to quantitatively
program gene expression. Science 334, 1716−1719.
(30) Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S.
(2002) Stochastic gene expression in a single cell. Science 297, 1183−
1186.
(31) Dematte,́ L. and Mazza, T. (2008) in Computational Methods in
Systems Biology (Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M.,
Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Pandu Rangan, C.,
Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y.,
Weikum, G. et al., Eds.) Vol. 5307; pp 191−210, Springer, Berlin,
Heidelberg.
(32) Dahmann, C., Oates, A. C., and Brand, M. (2011) Boundary
formation and maintenance in tissue development. Nat. Rev. Genet. 12,
43−55.
(33) Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C.,
Kitano, H., Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A.,
Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., et al.
(2003) The Systems Biology Markup Language (SBML): A medium

for representation and exchange of biochemical network models.
Bioinformatics 19, 524−531.
(34) Pedersen, M., and Phillips, A. (2009) Towards programming
languages for genetic engineering of living cells. J. R. Soc., Interface 6,
S437−S450.
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