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Course Aims and Philosophy

* Provide an integrated
overview of plant and
microbial biology

 Address all levels from
molecules to ecological
communities




Lecture Content Overview

* Fundamental aspects of plant
biology and microbiology

* Related to current world
ISsues e.g.

* Biofuels
» Crop protection
* Climate change




Practical Classes |

* Brand new teaching lab

* Integrated practicals:

* Make your own GM plant
containing a reporter
gene

* Physiology of tobacco
with Rubsico antisense
constructs

» Plant Pathology




Practical Classes

Visits to:
* Botanical Garden
* NIAB Innovation Farm

* Local Field Sites (e.g.
Hayley Wood
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Portugal Field Trip

* Mini projects

e See lecture material out in
the field

e Sunshine!
* 15th March-22nd March 2020
* Sign up on Moodle




Support on Moodle

* Lecture and practical material
» Glossaries for every lecture block
* Interactive resources for consolidation

Welcome to the NST IB Plant and Microbial Sciences 2018-19

This site provides learning resources for students taking IB Plant and Microbial Sciences including: Lecture timetable, Course information, Supplementary lecture material, Student feedback and Course management.

If you have any questions about any of this content, or want to suggest additional ideas for content please email
(ugadmin@plantsci.cam.ac.uk)
Note: Access to this site is logged and the information recorded about site usage is available to the site maintainers. This information incudes which users have visited the site, when they visited and what they have looked at. These statistics are being monitored simply to provide information on site usage and will not b

disclosed to a third party. If you have any concerns, please contact the site maintainer.
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NST PMS 1B: Origins of modern agriculture

Prof. Jim Haseloff (jh295): Supplementary lecture materials at haseloff.plantsci.cam.ac.uk

Lecture 1. Plant breeding and transformation

(i) Crop domestication, with maize as an example

(ii) Modern agriculture, hybrid maize and the rise of agribusiness
(iii) Green Revolution

(iv) Agrobacterium mediated plant transformation

Lecture 2. From genotype to phenotype

(i) Designing synthetic plant genes

(ii) Single gene traits: pest and herbicide resistance
(iii) Reporter genes

(iv) Microscopy

Lecture 3. Crop traits

(i) Complex traits and breeding

(ii) Cellular growth

(i) Trait development in Brassicas

(iv) Pod shatter in Arabidopsis and Brassica crops.

Following lectures: CO; levels, photosynthesis and carbon capture (Hibberd);
Nutrient availability (Davies); Global warming: Drought and water relations
(Griffiths); Temperature responses
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Origins of world crops
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THE MIGRATION OF ANATOMICALLY MODERN HUMANS

Evidence from fossils, ancient artefacts and genetic analyses combine to tell a compelling story
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Two routes jump out as prime candidates for the human exodus
out of Africa. A northern route would have taken our ancestors
from their base in eastern sub-Saharan Africa across the Sahara
desert, then through Sinai and into the Levant. An alternative
southern route may have charted a path from Djibouti or Eritrea
in the Horn of Africa across the Bab el-Mandeb strait and into
Yemen and around the Arabian peninsula. The plausibility of
these two routes as gateways out of Africa has been studied as
part of the UK’s Natural Environment Research Council's
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programme "Environmental Factors in the Chronology of Human
Evolution & Dispersal” (EFCHED).

During the last ice age, from about 80,000 to 11,000 years
ago, sea levels dropped as the ice sheets grew, exposing large
swathes of land now submerged under water and connecting
regions now separated by the sea. By reconstructing ancient
shorelines, the EFCHED team found that the Bab el-Mandeb
strait, now around 30 kilometres wide and one of the world's
busiest shipping lanes, was then a narrow, shallow channel.

~

Early humans may have taken this southern route out of Africa.
The northern route appears easier, especially given the team's finding
that the Suez basin was dry during the last ice age. But crossing the
Sahara desert is no small matter. EFCHED scientist Simon Armitage of
the Royal Holloway University of London has found some clues as to
how this might have been possible. During the past 150,000 years,
North Africa has experienced abrupt switches between dry, arid
conditions and a humid climate. During the longer wetter periods
huge lakes existed in both Chad and Libya, which would have
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Monte Verde

provided a "humid corridor" across the Sahara. (Chile)

Armitage has discovered that these lakes were present around
10,000 years ago, when there is abundant evidence for human
occupation of the Sahara, as well as around 115,000 years ago,
when our ancestors first made forays into Israel. It is unknown
whether another humid corridor appeared between about 65,000
and 50,000 years ago, the most likely time frame for the human
exodus. Moreover, accumulating evidence is pointing to the
southern route as the most likely jumping-off point.
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stone points

~15k

of population centres
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Archaeological maize samples
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Domestication of maize

Figure 1. Domestication of corn. The upper image shows the mature inflorescence, or “ear” of teosinte (Zea mays ssp.
mexicana), the probable wild progenitor of modern corn (or maize, Zea mays ssp. mays L.), shown in the lower image. The
teosinte inflorescence has no cob, allowing the seed to separate and disperse easily when they are mature. Selection over
time by early agriculturalists resulted in types that retained their seed on the ear, leading to the development of the cob.
Modern breeding has greatly increased the size and number of seed per ear. (Courtesy J. Doebley, University of Wisconsin)
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Maize breeding

1. Natural variation occurs in 2. Seeds for the next generation
the wild population. are chosen only from individuals
with the most desirable traits.

‘I'-I*\

4

ll‘lll. -

3. Repeat this process for several 4. Qver time, the quahty of the
generations. Crop Increases.

Image from University of California Museum of Paleontology, Understanding Evolution - www.evolution.berkeley.edu



Sculpture of Mexica Goddess Chicomecoatl with Ears of Corn
Museum of Anthropology - Mexico City - Mexico




Examples of some of the 59 native Mexican maize landraces.
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Maize domestication was accompanied by modification of
many plant traits related to agronomy, growth and yield
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Major differences between maize and teosinte map to few loci

Table 1. List of principal traits distinguishing maize and teosinte

Trait Description
CUPR (cupules per rank) Number of cupules in a single rank
DISA (disarticulation score) Tendency of ear to shatter (1-10 scale)
GLUM (glume score) Hardness and angle of outer glume (1-10 scale)
LBIL (lateral branch internode) Average length of internodes on the primary lateral branch
LIBN (branch number) Number of branches in primary lateral inflorescence
PEDS (pedicellate spikelet score) Percentage of cupules lacking the pedicellate spikelet
PROL (prolificacy) Number of ears on the primary lateral branch
RANK (rank) Number of rows of cupules
STAM (staminate score) Percentage of male spikelets in primary lateral inflorescence

Doebley et al., PNAS (USA) 87:9888-9892 (1990)






Genetic crossing to produce hybrid Maize
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Roswell Garst:
marketing and adoption
of hybrid maize.

Growth of seed
companies (like Garst
Seed) and increasing
use of fertilisers and
pesticides.

Beginning of modern

agriculture and
integration of
industrialised approaches
to food production.
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Yield increases
100 - gOOpO00000O0NOOO0onD
80 - o o®
O 504
o
00
60
| Qo
40 o
a o
20 4 &
o ¢
noo
O“W I I I I I
1930 1935 1940 1945 1950 1955 1960 IR A
Year S

b Mo17 F, B73

11

10 238
223 23 Be

2 : 3355

8- é : 358
:| 358
: Hi :

& 225 i

6 4 iL .. ?. #

333 $ .
SS= £ n

O | | | | | | 33

1930 1940 1950 1960 1970 1980 1990 =

o=lowa  Year of hybrid introduction

"Il
-

a
1!
|
) §
A atetenth
L)

&= USA Grain yields (tons hectare-1) of hybrid maize

5

——



Maize is the world’s most successful crop
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Average regional maize output (kg/ha)
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The Green Revolution

Total word production of coarse grain, 1961-2004
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Growth
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CHART 4: Africa missed out on the Green Revolution.



Primary Gene Pool

Same and closely related
Species.

Complete chromosome pairing.

Secondary Gene Pool
More-distant species

Partial F1 sterility.
Crosses by pollination difficult;

may require embryo culture.

Tertiary Gene Pool

Marginally sexually
compatible species.
Severe F1 sterility.
Crosses generally not successful.

Quaternary Gene Pool

All organisms, including animals
and microbes.

Crosses not possible by
pollination or tissue culture
methods.

Gene transfer via transgenic
methods.

Crosses by pollination successful.

Incomplete chromosome pairing.

Expansion of the gene pool

Figure 4. Sources of genetic variation for crop improvement. Breeders pro-
duce plants with improved combinations of genes by crossing (hybridization)
and selection within the primary gene pool, which is comprised of a crop
species and its closest related wild species. Tissue culture methods such as
embryo culture are commonly used to enable genes from the secondary gene
pool to be transferred into the cultivated species. Other methods such as
somatic hybridization sometimes allow genes from the tertiary gene pool of
more distantly related species to be transferred into crop plants. The immense
gene resources of the quaternary gene pool (essentially all other organisms)
can be used for crop improvement only via transgenic methods.



D.I. Pacurar et al. / Physiological and Molecular Plant Pathology 76 (2011) 76—81

Crown gall disease

Fig. 1. Crown gall tumor on an oak tree.






Agrobacteriun tumefaciens is the causal agent of crown gall disease

2. A virulent bacterium carries a Ti plasmid
in addition to its own chromosomal DNA.
The plasmid’s T-DNA enters a cell and
integrates into the cell’s chromosomal DNA,

Transformed
1. The tumor Is Initlated
when bacteria enter a plant cel
lesion and attach
themselves to cells.

3. Transformed cells
proliferate to form a
crown gall tumor.

4. Tumor tissue can be“cured” of
bacterla by Incubation at 42°C
The bacteria-free tumor can be
cultured indefinitely in the
absence of hormones.
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Agrobacterium transfers genes for tumour growth and opine biosynthesis to plant cells



Agrobacterium tumefaciens exploits a modified bacterial conjugation
system in order to transform susceptible plant cells.

a Conjugation

O ﬁ%_)

—Conjugative plasmid
or transposon

T4S5S =Type IV secretion system



Auxins
Plant: Cytokinins
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Fig. 1.
Schematic of octopine-type Ti plasmid pTiA6 showing locations of genes coding for

plasmid maintenance (rep), infection of plant cells (vir region, T-DNA), cell survival in the
tumor environment (opine catabolism), and conjugative transfer of the Ti plasmid to
recipient agrobacteria (fra and trb). The various contributions of the vir gene products to T-
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Fig. 4.

Genetic organization of the A. tumefaciens Ti plasmid-encoded virB and trb operons. The
virB genes and some of the known functions of the encoded products are presented at the
top. This T4SS is closely related in operon organization and subunit composition to a T4SS
encoded by the E. coli conjugative plasmid pKM101. The Trb system is closely related in
operon organization and subunit composition to a T4SS encoded by the E. coli conjugative
plasmid RP4. Genes encoding protein homologs are identically color-coded.



Escherichia coli
Agrobacterium tumefaciens
Brucella suis
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Side view : Cut-out

Outer
membrane

VirB7 and VirB9

| layer

VirB10

Y o

Tilted inner
membrane side

Figure 4 | Structure of a type IV secretion core complex. The core complex>? is composed of TraN (a VirB7
homologue), TraO (a VirB9 homologue) and TraF (a VirB10 homologue), which are encoded by the Escherichia coli
conjugative plasmid pKM101. This structure was obtained using cryo-electron microscopy and is viewed from the side
(upper left panel), tilted towards the outer membrane side (lower left panel) and tilted towards the inner membrane

side (lower right panel). The cut-out view (upper right panel) details the proposed transmembrane regions and the localization
of the VirB7, VirB9 and VirB10 homologues within the structure. C, carboxy-terminal domain; N, amino-terminal domain.
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Agrobacterium transformation of plant cells is mediated by intercellular signalling,
attachment, virulence protein catalysed DNA transfer to the nucleus and genome integration.



Removal of the tumour-forming
genes, and separation of the
virulence functions (Vir genes) on a
separate “helper” plasmid allows
simpler manipulation of the T-DNA
and genes to be inserted into the
plant genome.
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Summary of Agrobacterium mediated gene transfer and plant regeneration



Figure 4 Regeneration of transgenic maize plants



Biolistic delivery of DNA
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Figure 3. Important Historical Milestones in Plant Transformation.

Sinceits beginningin 1977, the pace of crop transformation technology development has not been linear. Inrecent years, the genome editing revolution begs

for crop transformation improvements to enable greater food security.



