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Synthetic biology is bringing together engineers and biologists to design and
build novel biomolecular components, networks and pathways and to use
these constructs to rewire and reprogram organisms. These re-engineered
organisms will change our lives over the coming years, leading to cheaper
drugs, ‘green’ means to fuel our cars and targeted therapies for attacking
‘superbugs’ and diseases such as cancer. The de novo engineering of genetic
circuits, biological modules and synthetic pathways is beginning to address
these crucial problems and is being used in related practical applications’.

ORIGENE

Your Gene Company

Synthetic signal processing

(Biosensing)

Cells have evolved a myriad of regulatory circuits — from transcriptional to
post-translational — for sensing and responding to diverse environmental
signals. Synthetic biology aims to re-engineer these circuits and circuit
components to bring about novel sensory functions and to process the upstream
signals in predictive ways for mobilizing appropriate cellular responses.
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Protein scaffolds, which serve as natural signal processing hubs, can

be purposefully engineered to tune the output response of cells to
environmental or internal signals. In the example shown, a synthetic
protein scaffold was used to physically recruit positive and negative
modulators of a MAP kinase pathway to enable new and desired circuit
responses (for example, accelerated, delayed or ultrasensitive responses)®.

Synthetic sensing

« Engineered gene circuits induce the local extrusion of lamellipodia in live cells.
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(Synthetic biology foundations>

Therapeutic treatment

Farnesyl diphosphate

‘.‘ ‘.A Synthetic biology was born with the broad goal of ‘wiring’ biological Synthetic biology devices have been developed
et circuitry for manifesting logical forms of cellular control. The successful design to serve as therapies themselves. In this example,
Artemisinin  Lycopene and construction of early synthetic gene networks — for example, the genetic engineered bacteriophages have been deployed to

toggle switch? and the repressilator’ — demonstrated that engineering-based
methodology could indeed be applied to build predictive and sophisticated behaviour
into biological systems. In the simple devices shown, cells were programmed to toggle
between stable genetic states (left) and to perform genetic tasks periodically (right).
In a little over 10 years, the field has moved a long way from these basic beginnings.

combat the growing problem of antibiotic-resistant
bacteria. Bacteriophages were synthetically
endowed with a genetic armament (dispersin B (DspB))
that effectively penetrates and destroys the
antibiotic-protected environment known as a biofilm®.

(Manufacturing)

Engineered DspB-expressing Cell lysis, phage and DspB release

The use of synthetic approaches for constructing and optimizing biosynthetic pathways T7 phage and biofilm dispersal

is providing an alternative and cost-effective means of producing rare drugs of natural .
origin on a large scale. In a noteworthy example, microbes were engineered to produce < .Contlpued
the rare antimalarial drug artemisinin to industrial levels''. This was accomplished by S @ infection
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synthetically reconstructing and optimizing the mevalonate-dependent pathway in
both E. coli and yeast, before ultimately scaling-up for industrial production in yeast.
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Progress in medicine is faced with many challenges, such as the drying of
pharmaceutical pipelines and the limited global access to viable medicines.
Synthetic biology has begun to make promising strides at each stage of the
therapeutic spectrum, from elucidating diseases to drug production.
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Optimizing pathway flux:
rational design

Controlled gene expression
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Synthetic circuits offer a more controlled approach
to gene therapy, such as the ability to dynamically
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assays using synthetic
biology strategies.
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Blue Heron — Leading Gene Synthesis Technologies
for Synthetic Biology Applications

Blue Heron Biotech has been a pioneer of the gene synthesis
industry since 1999. Through the years, Blue Heron has
developed novel and proprietary high throughput, fully
automated synthesis platforms to serve customers who need
a single gene to megabases of DNA. Part of that pioneering
activity has led Blue Heron to be the first company to:

e Work with researchers worldwide to create synthetic
DNA components

¢ The primary supplier for the first synthetic genome, as
published in Science (Gibson, D. G. et al. 329, 52-56 (2010))

¢ Deliver a 52 kb gene

¢ Synthesize a megabase of DNA in a month

Innovation for the Synthetic Biology Researcher

Blue Heron offers breakthrough technologies to meet the
growing synthesis demands of researchers worldwide.
These innovations include expanding capabilities for:

* Shuffling of synthetic blocks
* Whole-genome synthesis

e Complex sequence synthesis
e Variant libraries

Blue Heron is Your Gene Synthesis Partner

In August 2010, Blue Heron became a wholly owned subsidiary
of OriGene Technologies, Inc. Together we can now provide a
one-stop solution for the molecular biology research community.

For more information:
www.blueheronbio.com or www.origene.com
Blue Heron Biotech, LLC 1-425-5000 Bothell, Washington, USA
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